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LETTER TO THE EDITOR

Instability of a Landau–Fermi liquid as the Mott insulator
is approached

N Furukawa† and T M Rice
Theoretische Physik, ETH-Ḧonggerberg, CH-8093 Z̈urich, Switzerland

Received 3 March 1998

Abstract. We examine a two-dimensional Fermi liquid with a Fermi surface which touches
the Umklapp surface first at the four points(±π/2, ±π/2) as the electron density is increased.
Umklapp processes at the four patches near(±π/2, ±π/2) lead the renormalization group
equations to scale to strong coupling, resembling the behaviour of a two-leg ladder at half-
filling. The incompressible character of the fixed point causes a breakdown of Landau theory at
these patches. A further increase in density spreads the incompressible regions so that the open
Fermi surface shrinks to four disconnected segments. This non-Landau state, in which parts of
the Fermi surface are truncated to form an insulating spin liquid, has many features in common
with phenomenological models recently proposed for the cuprate superconductors.

One of the key issues in high-Tc superconductivity is the nature of the anomalous normal
state, which shows many characteristics of non-Landau–Fermi liquid behaviour. This
contrasts with the behaviour of many other transition metal oxides which have strongly
renormalized Landau–Fermi liquids near the Mott transition but no superconductivity [1].
Haldane [2] has shown that Landau theory is generally valid in two dimensions. This has
led to a search for some instability of the Fermi liquid with increasing electron density
in the overdoped cuprates. In this letter we show how Umklapp scattering can cause an
instability of the Fermi surface of a two-dimensional metal as the Mott state is approached.
This instability need not involve long-range magnetic order but it causes a charge gap and
truncation of parts of the Fermi surface. This type of behaviour has been documented in a
lightly doped three-leg ladder where the two even parity channels form an insulating spin
liquid (ISL) leaving a Fermi surface only in the odd parity channel [3, 4]. Here we discuss
how a similar behaviour can arise in two dimensions.

We start with a general two-dimensional dispersion relation, for example, a form
ε(k) = −2t (coskx+cosky)−4t ′ coskx cosky with t (t ′) as (next-) nearest-neighbour hopping
matrix elements. Takingt > 0 and t ′ > 0 and increasing the electron density,n, leads to
a Fermi surface which touches the surface at which Umklapp processes are allowed first at
the four points(±π/2, ±π/2). Following Haldane [2] we divide the Fermi surface into
patches and examine the patches near the four points(±π/2, ±π/2). These four patches on
the Fermi surface are connected through Umklapp processes which leads us to examine the
renormalization group (RG) equations for the coupling constants. The RG equations have
similarities to those for a two-leg ladder at half-filling which also has four Fermi surface
points and which are known to scale to a strong coupling solution.
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The four patches around(±π/2, ±π/2) are sketched in figure 1. The size of a patch
is defined by a wavevector cut-off,kc, and within each patchα (α = 1, . . . ,4) the electron
energy relative to the chemical potential,µ is expanded as

εα(q)− µ = vqα + uq2
⊥,α (1)

whereq is the wavevector measured from the centre of theα-th patch, andqα (q⊥,α) is
the component ofq normal (tangent) to the Fermi surface at the centre of the patch. The
Fermi velocity is given byv, and the energy cut-off isE0 = vkc. We definev∗ = πv/kc,
and hereafter takeπv∗ = 1 as the unit of energy.

(p,0)

(0,p)

Figure 1. Definitions of the four patches, shown as hatched rectangular areas. The bold curve
represents the two-dimensional Fermi surface which touches the points(±π/2,±π/2). The
grey lines show the Umklapp surface where Umklapp processes are allowed.

The linear dispersion relation leads to logarithmic anomalies in the particle–hole (Peierls)
and particle–particle (Cooper) channels, as in one dimension, but the transverse dispersion
introduces an infrared cut-off,ET , with a magnitudeET ≈ uk2

c . The non-interacting
susceptibility in the Peierls channel takes the formχp(ω) = 1/2 ln(max(ω,ET )/Ec). In
the parameter regionω > ET , the infrared cut-off from the transverse dispersion can be
ignored, and a set of RG equations can be derived as in one dimension [5].

In figure 2 we define the normal verticesg1, g2 andg1r, as well as Umklapp vertices
g3, g3p andg3x. Other interactions are not treated here since they are irrelevant within the
framework of a one-loop approximation. Summing up all one-loop diagrams, we obtain the
RG equations

ġ1 = g1
2+ g1r

2+ 2g3x
2− 2g3xg3p (2)

ġ2 = 1
2

(
g1

2+ 2g1r
2− g2

3 − 2g3p
2
)

(3)

ġ1r = (g1+ g2)g1r (4)

ġ3 = (g1− 2g2)g3+ 2g3x
2− 2g3xg3p− g3p

2 (5)

ġ3x = 2g1g3x− g1g3p− g2g3x+ g3g3x− g3g3p (6)

ġ3p = −(g2+ g3)g3p. (7)

Here ġi ≡ x(dgi)/(dx) andx = ω/E0.
Note these equations differ from those obtained by Zheleznyaket al [6] who earlier

considered a model with four flat Fermi surface patches. In their model the patches were
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g1 g2 g3

g1r g3p g3x

Figure 2. The definitions of vertices for the four-patch model.

oriented perpendicular to the (1, 0) and (0, 1) directions and as a consequence Umklapp
processes connecting perpendicular patches did not enter the RG equations, which are then
more closely related to those for a single chain at half-filling. Equations (2)–(7) coincide
with those derived previously by Houghton and Marston [7] who considered the problem
of a lightly doped flux state rather than the present limit of a heavily doped model with
next-nearest-neighbour hopping.

We take repulsive Umklapp interactions asg3 = g3x = g3p = U , and treatg1, g2 andg1r

as parameters. The fixed points are obtained by numerically integrating the RG equations.
In a substantially wide region aroundg1 ∼ g2 ∼ g1r ∼ U , we find a strong coupling fixed
point where both normal and Umklapp vertices diverge. The corresponding phase diagram
is shown in figure 3. The asymptotic behaviour of the vertices is given by

gi = g0
i 3/[1+3 log(ω/E0)]

where (
g0

1, g
0
2, g

0
1r, g

0
3, g

0
3p, g

0
3x

) = ( 1
14,

5
14, 0, 9

14,
1
7

√
15
2 ,

1
14

√
15
2

)
.

A singularity appears atω ∼ ωc = E0 exp(−1/3) where3 ∝ U . In two dimensions, such
an anomaly at finiteω is an artifact of the one-loop calculation and higher-order terms will
shift it to ω = 0. Nevertheless,ωc represents the energy scale where the system crosses
over from weak coupling to strong coupling. We will explicitly assume that the interactions
∼ U are strong enough so thatωc > ET , in which case the existence of a finite curvature
becomes irrelevant at the strong coupling fixed point. In contrast, if the system had scaled
to weak coupling, thenET would always remain relevant. There is a limit with weak
interactions and a dispersion relation witht ′ � t where both conditions,ET (= 2t ′k2

c )� ωc
andU � E0, are satisfied and our approach based on one-loop RG equations is justified.
We speculate that the qualitative nature of the anomaly obtained in this weak coupling
region is also present in the strong coupling regionU & t, t ′.

We now discuss the nature of the fixed point through the anomalies in the susceptibilities.
Due to the nesting behaviour in the non-interacting case, anomalies may exist in the spin
susceptibility (χs) and the charge susceptibility (χc) at q = (π, π). Within the one-loop
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Figure 3. Phase diagram of the four-patch model atg3 = g3x = g3p = U . The hatched area
shows the region where Umklapp interactions flow to strong coupling. Here, we takeg1r = g1,
but the hatched region does not change qualitatively if we take other values forg1r.

calculation, we find

χs(π, π) ∝ (ω − ωc)
αs αs = −g0

2 − g0
3 − 2g0

3p (8)

χc(π, π) ∝ (ω − ωc)
αc αc = 2g0

1 − g0
2 + g0

3 − 2g0
3p+ 4g0

3x. (9)

The superconducting susceptibilities for s-, p- and d-wave pairing (1s , 1p and 1d ,
respectively) also behave as

1s ∝ (ω − ωc)
αss αss= g0

2 + g0
1 + 2g0

1r (10)

1p ∝ (ω − ωc)
αps αps= g0

2 − g0
1 (11)

1d ∝ (ω − ωc)
αds αds= g0

2 + g0
1 − 2g0

1r. (12)

At the fixed point with strong Umklapp coupling described above, the leading divergence
is observed in the spin susceptibility with the exponentαs = −1.782, while the exponents
for charge and superconducting susceptibilities are positive so that these susceptibilities do
not diverge at the critical point.

The uniform spin,χs(0), and charge,κ, [8, 9] susceptibilities are also of interest. As
in the case of 1d chain system, we have spin gap behaviour when there is a divergence in
g1 and charge gap behaviour fromg3,

χs(0) ∝ (ω − ωc)
(g0

1)
2/2 (13)

κ ∝ (ω − ωc)
(g0

3)
2/4. (14)

Here we approachωc by decreasing bothω and q with q/ω being fixed. In the present
case, bothg1 andg3 flow to strong coupling which indicates a tendency to open up both
spin and charge gaps.

We now compare the present results to those of a two-leg ladder at half-filling. In this
case, as Balents and Fisher have shown [10], there are nine vertices which are relevant within



Letter to the Editor L385

a one-loop calculation. Again the flow is to strong coupling in backward and Umklapp
scattering channels. In this case the properties of the strong coupling fixed point are well
established. The system is an insulating spin liquid (ISL) with both spin and charge gaps
(C0S0 in the Balents–Fisher notation) and is an example of a short-range RVB (resonant
valence bond) state first proposed by Anderson for aS = 1/2 Heisenberg model [11]. The
spin susceptibilityχs(π, π) is strongly enhanced but remains finite.

In the present case we cannot be sure of the spin properties from the one-loop
calculations especially since the spin susceptibility at(π, π) and (0, 0) behave in a
contradictory fashion. What is certain is the scaling to strong coupling with diverging
Umklapp scattering. This gives us confidence in the result that the compressibility
κ = dkF,α/dµ → 0 at the fixed point as it does in the two-leg ladder at half-filling.
This has several profound consequences. Firstly, the condensate that forms is pinned and
insulating. Secondly when additional electrons are added to the system the Fermi surface
does not simply expand along the(±1,±1) directions beyond the(±π/2, ±π/2) points as
would happen for non-interacting electrons. Instead the charge gap and vanishing dkFα/dµ
force the additional electrons to be accommodated in the rest of Fermi surface.

Our proposal that the strong coupling fixed point is in the same universality class (C0S0)
as that of the two-leg ladder at half-filling differs from the conclusions of Zheleznyaket al
[6] who found antiferromagnetic order in their model, which in turn is rather related to the
class of fixed points of the single chain at half-filling (C0S1). Note that the finite curvature
in the present model, which kills nesting properties, acts to suppress the Peierls channel
away from the four patches and therefore the tendency to antiferromagnetic order. A similar
conclusion was reached in [6] when a finite curvature was included.

To examine what happens next we increase the electron density such that there are
eight points on the Umklapp surface which intersect the non-interacting Fermi surface at
a finite angle (see figure 4(a)). This leads us to examine an eight-patch model allowing
for Umklapp scattering processes. Within a one-loop calculation, the eight-patch model has
nine relevant coupling constants, defined in figure 5, and their RG equations are given by

ġ1 = g1
2+ g1xg2x+ g1sg1l + g1r

2+ g3x
2− g3pg3x (15)

ġ2 = 1
2

(
g1

2+ g1x
2+ g2x

2+ g1s
2+ g1l

2+ 2g1r
2− g3p

2
)

(16)

ġ1x = g1g2x+ g2g1x+ (g1s+ g1l)g1r (17)

ġ2x = g1g1x+ g2g2x+ (g1s+ g1l)g1r (18)

ġ1s= g1g1l + g2g2s+ (g1x+ g2x)g1r (19)

ġ1l = g1g1s+ g2g2l + (g1x+ g2x)g1r (20)

ġ1r = 2(g1+ g2)g1r+ (g1x+ g2x)(g1s+ g1l) (21)

ġ3p = −g2g3p (22)

ġ3x = (2g1− g2)g3x− g1g3p. (23)

For Hubbard-like interactions,gi = U , numerical integration shows that the interactions
flow to a strong coupling fixed point with divergentg1, g2, g3x andg3p with prefactors

g0
1 = 1

3(−2+
√

10)

g0
2 = 1

g0
3p = 2g0

3x = 2
3

√
8−
√

10
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(p,0)
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(p,0)

(0,p)
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(p,0)
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(c)

Figure 4. Shapes of the Fermi surfaces when electron concentration is further increased. (a) The
non-interacting Fermi surface where eight patches are defined at the intersection with Umklapp
surface. (b) The distorted Fermi surface when it is pinned at(±π/2,±π/2) points. (c) In the
caset ′ < 0, the Fermi surface should be pinned at(π, 0) and(0, π).

while the other couplings flow to zero. Examining the susceptibilities gives us again the
result that the spin susceptibility diverges most strongly with an exponentαs = −g0

2 = −1 .
However the wavevector is no longer(π, π) but the incommensurate wavevector connecting
patches that span the Fermi surface. The uniform spin susceptibilityχs(0) diverges to zero
but the compressibilityκ is not renormalized to this order.

The scaling of the one-loop equations to a strong coupling fixed point, even when we
start with a non-interacting Fermi surface, makes it necessary to consider the strong coupling
behaviour further. The restriction that we found in the four-patch model, which prevents
the Fermi wavevector along(±1, ±1) directions from extending past the Umklapp surface,
strongly suggests that this behaviour will spread out laterally as indicated in figure 4(b).
Again we can draw a parallel to the slightly doped three-leg ladder where in strong coupling
a C1S1 phase containing an ISL with commensurate filling in the even parity channels
remains stable up to a critical density. This contrasts with the one-loop result which gives a
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g1 g2 g1x

g2x g1s g1l

g1r g3p g3x

Figure 5. The definitions of vertices for the eight-patch model.

C2S1 phase with holes immediately entering both odd- and even-parity channels. Actually
we can examine the strong coupling limit self-consistently. If we start from a dispersion of
the form figure 4(b) in a eight-patch model, then we find thatκ → 0. So a lateral spreading
of the truncated region of the Fermi surface, as shown in figure 4(b), is self-consistent.

While a one-loop calculation is of limited validity at a strong coupling fixed point, there
are a number of conclusions that can be drawn. To begin with, the breakdown of Landau
theory, as the system scales to a fixed point with strong Umklapp scattering is certain.
Less certain is the question whether it has long-range spin order or not. Even if it has,
it is not the essence of the fixed point, which is the divergence of Umklapp scattering as
the fixed point is approached. The most likely form remains an ISL spreading across the
Fermi surface which successively truncates the Fermi surface, as shown schematically in
figure 4(b). This is consistent with the result thatχs(0) → 0 always. The condensate is
pinned and insulating due to the Umklapp scattering. We note that an ISL, which truncates
part of the Fermi surface, is not characterized by any simple broken symmetry or order
parameter. It is not amenable to a simple mean field or Hartree–Fock theory since there
are no anomalous averages. Also the onset of the ISL is a crossover rather than a phase
transition at finite temperature. Lastly, we should remark that the ISL is not incompressible
since it can expand or contract laterally by exchanging electrons with the open parts of the
Fermi surface.

The Fermi surface in the cuprates has a different form witht ′ < 0 and nott ′ > 0 as we
investigated. In this case the Fermi surface first touches the Umklapp surface at the saddle
points(π, 0) and(0, π). This leads to complications in the analysis due to the presence of
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ln2(ω/E0) terms in the RG equations which will require additional analysis in the future.
Dzyaloshinskii [12] has made a detailed analysis of a weak coupling fixed point for this
model leading to a form of Luttinger liquid behaviour. Our result for the eight-patch model
lead us to consider possible strong coupling fixed points with divergent Umklapp scattering
which would introduce a charge gap at the Fermi surface. The open Fermi surface will then
be four disconnected segments centred on(±π/2, ±π/2) as sketched in figure 4(c), which
is similar to the results of a recent SU(2) gauge theory calculation [13]. Signs of such
behaviour are also evident in a recent analysis of the momentum distribution using a high
temperature series by Putikkaet al [14]. Note they include only nearest-neighbour terms in
the kinetic energy (i.e.t ′ = 0) which is a special limit from the present point of view.

If we accept the premise that in the cuprates Umklapp scattering stabilizes an ISL
in the vicinity of the saddle points, then there are some interesting consequences. For
example, the ISL provides a microscopic justification for some phenomenological models.
Geshkenbeinet al [15] proposed a model of preformed pairs in the vicinity of the saddle point
but with a very large mass to suppress their contribution to the conductivity in the normal
phase. Similarly the ISL can provide a reservoir of pairs that act to induce superconductivity
in the open parts of the Fermi surface but with the difference that here electron pairs cannot
be scattered into the ISL, only hole pairs. In fact experience with the ISL in the two-
leg ladder shows that it is preferable energetically to add holes in pairs to an ISL. Such
processes will then by an efficient mechanism cause pairing on the open segments of the
Fermi surface. Also recently Murakami and Fukuyama [16] included Umklapp scattering in
a mean field treatment and found that it enhanced dx2−y2 pairing. In the normal state there is
a close similarity to a phenomenological model proposed by Ioffe and Millis [17], to explain
the anomalous transport properties. Here also the Fermi surface segments have usual quasi-
particle properties (i.e. there is no spin–charge separation) and the scattering rate will vary
strongly since Umklapp processes will lead to strong scattering at the end of the segments
where they meet the Umklapp surface. These are key features of the phenomenological
Ioffe–Millis model. Ioffe and Millis justified their model by a comparison to the tunnelling
and ARPES experiments [18, 19] which show a single particle gap opening in the vicinity
of the saddle points similar to the form in figure 4(c). Lastly we refer the reader to the very
recent preprint by Balentset al [20] which introduces the concept of a nodal liquid with
properties similar to the ISL discussed above.

In conclusion we have shown that when the Fermi surface approaches the Umklapp
surface, the addition of Umklapp scattering can cause a breakdown of Landau theory. The
Fermi surface is truncated by the formation of a pinned and insulating condensate. We
have given arguments that the spin properties are those of an insulating spin liquid. This
microscopic model has a lot in common with some recent phenomenological models so that
we believe it can form the basis for a theory of the cuprates.

We wish to thank S Haas, D Khveshchenko, M Sigrist and E Trubowitz for stimulating
conversations. NF is supported by a Monbusho Grant for overseas research.
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